Adiabatic model of (d, p) reactions with explicitly energy-dependent nonlocal potentials
نویسندگان
چکیده
We have developed an approximate way of dealing with explicit energy dependence of nonlocal nucleon optical potentials as used to predict the (d,p) cross sections within the adiabatic theory. Within this approximation, the nonlocal optical potentials have to be evaluated at an energy shifted from half the incident deuteron energy by the n-p kinetic energy averaged over the range of the n-p interaction and then treated as an energy-independent nonlocal potential. Thus, the evaluation of the distorting potential in the incident channel is reduced to a problem solved in our previous work [N. K. Timofeyuk and R. C. Johnson, Phys. Rev. Lett. 110, 112501 (2013); Phys. Rev. C 87, 064610 (2013)]. We have demonstrated how our new model works for the case of 16O(d,p)17O, 36Ar(d,p)37Ar, and 40Ca(d,p)41Ca reactions and highlighted the need for a detailed understanding of the energy dependence of nonlocal potentials. We have also suggested a simple way of correcting the d-A effective potentials for nonlocality when the underlying energy-dependent nonlocal nucleon potentials are unknown but energy-dependent local phenomenological nucleon potentials are available.
منابع مشابه
Implications for (d,p) reaction theory from nonlocal dispersive optical model analysis of Ca(d,p)Ca
The nonlocal dispersive optical model (NLDOM) nucleon potentials are used for the first time in the adiabatic analysis of a (d,p) reaction to generate distorted waves both in the entrance and exit channels. These potentials have been designed and fitted in [Phys. Rev. Lett. 112, 162502 (2014)] to constrain relevant single-particle physics in a consistent way by imposing the fundamental properti...
متن کاملSensitivity of (d, p) Reactions to High n-p Momenta and the Consequences for Nuclear Spectroscopy Studies.
Theoretical models of low-energy (d, p) single-neutron transfer reactions are a crucial link between experimentation, nuclear structure, and nuclear astrophysical studies. Whereas reaction models that use local optical potentials are insensitive to short-range physics in the deuteron, we show that including the inherent nonlocality of the nucleon-target interactions and realistic deuteron wave ...
متن کاملNonlocal Piezomagnetoelasticity Theory for Buckling Analysis of Piezoelectric/Magnetostrictive Nanobeams Including Surface Effects
This paper presents the surface piezomagnetoelasticity theory for size-dependent buckling analysis of an embedded piezoelectric/magnetostrictive nanobeam (PMNB). It is assumed that the subjected forces from the surrounding medium contain both normal and shear components. Therefore, the surrounded elastic foundation is modeled by Pasternak foundation. The nonlocal piezomagnetoelasticity theory i...
متن کاملA Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution
In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...
متن کاملBuckling analysis of a size-dependent functionally graded nanobeam resting on Pasternak's foundations
Buckling analysis of a functionally graded (FG) nanobeam resting on two-parameter elastic foundation is presented based on third-order shear deformation beam theory (TOSDBT). The in-plane displacement of TOSDBT has parabolic variation through the beam thickness. Also, TOSDBT accounts for shear deformation effect and verifies stress-free boundary conditions on upper and lower faces of FG nanobea...
متن کامل